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CALIBRATION OF CONICAL PRESSURE PROBES FOR 

DETERMINATION OF LOCAL FLOW CONDITIONS 

AT MACK NUMBERS FROM 3 TO d" 
By John D. Norris 

Langley Research Center 

SUMMARY 

A wind-tunnel invest igat ion w a s  conducted t o  study the  charac te r i s t ics  of 
s i x  cones, which varied i n  diameter and cone angle, f o r  use as pressure probes 
i n  the  determination of Mach number, t o t a l  pressure, and flow angles. The cones 
had four equally spaced s ta t ic-pressure o r i f i ce s  on the  surface and a t o t a l -  
pressure o r i f i c e  a t  the  apex. Pressure measurements were taken a t  Mach numbers 
of 3.0, 4.5, and 6.0 and angles of p i t ch  up t o  about 20'. 
ducted a t  a Reynolds number per foot  (per  30.5 em) of approximately 0.85 x lo6. 

The t e s t s  were con- 

The r e su l t s  indicate  t h a t  Mach number can be determined within approxi- 
mately k3 percent and flow angles within about The possible e r r o r  i n  
determining t o t a l  pressure increases with increasing Mach number. Total  pres- 
sure can be determined within approximately k5 percent a t  a Mach number of 3.0 
and kl3 percent a t  a Mach number of 6.0. 
instrumentation and techniques employed i n  t h i s  invest igat ion and a r e  not neces- 
s a r i l y  the  l imit ing capabi l i ty  of t he  method i t s e l f .  In  general, an i t e r a t i v e  
procedure i s  usually required i n  order t o  obtain the  best  accuracy with t h i s  
method. 

These quoted accuracies are f o r  t he  

INTRODUCTION 

A t  supersonic speeds, t he  capabi l i ty  of measuring l o c a l  flow conditions 
(Mach number, t o t a l  pressure, and flow angular i t ies )  by the  use of a conical- 
shaped pressure probe with four  equally spaced s ta t ic-pressure o r i f i ce s  on the  
surface and a total-pressure o r i f i c e  a t  the  apex has been f a i r l y  well 

~- .~ - ._ . -  

*Part of t he  mater ia l  presented i n  t h i s  report  i s  included as a pa r t  of a 
thes i s ,  e n t i t l e d  "Use of a Conical Pressure Probe f o r  Determination of Local 
Flow Conditions at  M = 3 t o  6," submitted i n  p a r t i a l  fu l f i l lment  of t h e  require- 
ments for t he  degree of Master of Mechanical Engineering, University of Virginia, 
Charlot tesvi l le ,  Virginia, June 1-96?. 



establ ished up t o  a Mach number of 2.46. (See r e f s .  1 t o  3.) With increased 
emphasis on higher speeds, it has become desirable  t o  extend t h i s  capabi l i ty  of 
determining l o c a l  flow conditions t o  hypersonic Mach numbers. If a conical 
pressure probe can be cal ibrated t o  determine Mach number, t o t a l  pressure, and 
flow angularity a t  these higher speeds it could then be used t o  measure l o c a l  
flow conditions i n  t h e  v i c i n i t y  of hypersonic wing and body configurations. 
Knowledge of t h e  l o c a l  flow parameters would allow a b e t t e r  understanding of 
three-dimensional interferences i n  pa r t i cu la r  regions and a l s o  be of ass is tance 
i n  posit ioning and s iz ing  of hypersonic inlets.  

The present invest igat ion w a s  i n i t i a t e d  t o  determine the  f e a s i b i l i t y  of 
using a conical pressure probe with four  equally spaced s ta t ic-pressure o r i f i ce s  
on the  cone surface and a total-pressure o r i f i c e  at  t h e  apex t o  measure l o c a l  
flow conditions a t  hypersonic speeds. A pr inc ipa l  objective w a s  t o  ascer ta in  
the  accuracy with which Mach number, t o t a l  pressure, and flow angularity could 
be determined from t h e  f i v e  measured pressures.  Considerations deemed impor- 
t a n t  i n  se lec t ion  of any probe may be enumerated and it i s  observed t h a t  some 
conf l ic t s  ex i s t  which may be expected t o  lead  t o  compromise. Most of the  con- 
s iderat ions were given i n  reference 3 but a r e  repeated herein together with 
addi t ional  i t e m s  of spec ia l  importance f o r  hypersonic tes t ing :  

(1) A la rge  cone included angle w i l l  delay flow separation t o  la rge  flow 
angles . 

(2)  A l a rge  cone angle should provide maximum angle s e n s i t i v i t y  because 
of t he  grea te r  pressure difference between diametr ical ly  opposed or i f ices .  

( 3 )  A s m a l l  cone angle and probe diameter should minimize the  probe-induced 
disturbances. 

( 4 )  A la rge  cone angle w i l l  provide cone surface pressures of large magni- 
tude compared with t h a t  of t h e  stream s t a t i c  pressure but  w i l l  not necessarily 
give any subs tan t ia l  increase i n  the  Mach number s e n s i t i v i t y  of t he  device 
unless f o r  t h e  higher pressures grea te r  instrument measurement accuracy can be 
achieved. 

The present invest igat ion included, therefore,  measurement of the  charac- 
t e r i s t i c s  of several  d i f f e ren t  conical probes varying i n  diameter from 
0.125 inch t o  0.500 inch and with cone half-angle from l 5 O  t o  2 5 O .  
conditions were: Mach number range, from 3 t o  6; angle-of-pitch range, up t o  
approximately 20°; and roll-angle range, through 3 6 0 ~ .  The angle ranges per- 
mitted simulation of a broad range of e f f ec t ive  downwash and sidewash flow 
combinations. 

The t e s t  

CP 

SYMBOLS 

Ps - p1 

q1 
surfsce pressure coefficient,  

2 



M 1  

- 
PA 

PS 

pt,  1 

Pt, 2 

P1 

Mach number ahead of normal shock wave at  cone apex ( l o c a l  stream 
Mach number) 

ar i thmetic  mean of four  cone surface s t a t i c  pressures, 
1 y(ps,a -+ 's,b + 's,c + ps,d) 

s t a t i c  pressure on cone surface 

t o t a l  pressure ahead of normal shock wave a t  cone apex ( l o c a l  stream 
t o t a l  pressure) 

t o t a l  pressure measured behind normal shock wave at  cone apex 
( p i  t o t  p res  sure ) 

s t a t i c  pressure ahead of normal shock a t  cone apex ( l o c a l  stream 
s t a t i c  pressure) 

ps,c - Ps,a  
q1 

difference i n  pressures between o r i f i c e s  c and a, 

( see  f i g .  2) 

ps,d - ps,b difference i n  pressures between o r i f i c e s  d and b, 
q1 

(see f i g .  2) 

dynamic pressure ahead of normal shock at  cone apex ( l o c a l  stream 
dynamic pressure) 

ve loc i t i e s  i n  the  X-, Y-, and Z-directions, respect ively (see f i g .  2) 

veloci ty  ahead of normal shock wave a t  cone apex, l o c a l  stream 
veloci ty  

body axes ( see  f i g .  2) 

angle of a t tack  ( see  f i g .  2) 

angle of s ides l ip  ( see  f i g .  2) 

angle of downwash ( see  f i g .  2) 

angle of p i t ch  of cone axis (see f i g .  2) 

angle of sidewash (see f i g .  2) 

angle of roll ( see  f i g .  2) 
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Subscript s : 

a,b,c,d posi t ion of o r i f i c e s  on cone surface (see f i g .  2) 

0 quantity a t  angle of p i tch  

e=o quantity a t  zero angle of p i tch  

MODELS 

Probes 

Principal  d e t a i l s  of s i x  cone-cylinder probes, which varied i n  cone diam- 
eter from 0.125 in .  (0.318 cm) t o  0.500 in .  (1.27 cm) and i n  cone half-angle 
from 150 t o  2 5 O ,  are shown i n  f igure  1 and t a b l e  I. 
o r i f i ce s  were circumferentially located 90° apart  on t h e  cone surface ( f i g .  2) 
and a total-pressure o r i f i c e  w a s  located at  t h e  cone apex. 

Four s ta t ic-pressure 

Model Support 

The conical pressure probes were mounted on a wedge-shaped strut t h a t  
extended horizontal ly  and on t h e  tunnel center l i n e  across the  tunnel t es t  sec- 
t i o n  as shown i n  figure l ( b ) .  The strut had a 15' half-angle and provisions 
were made f o r  mounting the  probe models so  t h a t  t h e  s t a t i c -o r i f i ce  locat ions 
would be 2.15 in .  (5.46 cm) ahead of t he  sharp-wedge leading edge. Three cones 
were mounted simultaneously f o r  t e s t i n g  a t  t h e  three  indicated posi t ions.  
strut w a s  pitched about an axis which passed through t h e  s t a t ion  of t he  s t a t i c -  
pressure o r i f i ce s  of t h e  probes. Provisions were made t o  roll t he  probes about 
t h e i r  longi tudinal  axis of symmetry which when coupled with p i tch  angle would 
permit simulation of d i f f e ren t  combinations of downwash and sidewash. 

The 

TESTS, INSTRUMENTATION, AND PRECISION 

The t e s t s  were conducted i n  the  2-foot hypersonic f a c i l i t y  a t  t he  Langley 
Research Center ( r e f .  4) at Mach numbers of 3, 4.5, and 6 and a Reynolds number 
per foot  (per  30.5 cm) of approximately 0.85 x 106. Pressure measurements were 
obtained up t o  about +20° angle of p i tch  and through 360° angle of roll. 
invest igat ion w a s  conducted i n  such a way t h a t  each roll angle required a 
separate run. 

The 

Measurements of t he  pressures indicated by the  f i v e  o r i f i ce s  on each probe 
were obtained by means of 2-psia ( 13.79-kN/m2) transducers referenced t o  zero 
pressure. These pressure transducers were cal ibrated three  t i m e s  during the  
t e s t i n g  period and no changes i n  ca l ibra t ion  s e n s i t i v i t i e s  were noted. 
t o t a l  pressure of t h e  tunnel w a s  measured by a precision electromanometer. 
Also employed during t h e  invest igat ion w a s  a radiation-type pressure-sensing 
instrument used t o  measure the  s t a t i c  pressure i n  t h e  tunnel t es t  section. 
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The Mach number w a s  set by using t h e  appropriate r a t i o  of t h e  tunnel 
s t a t i c  pressure t o  t h e  tunnel t o t a l  pressure. Since both pressures were meas- 
ured by high accuracy instrumentation a l l  t h e  t e s t s  were conducted under iden- 
t i c a l  conditions. The Mach number w a s  a l so  checked from t h e  r a t i o  of t h e  tunnel 
t o t a l  pressure t o  t h e  p i t o t  pressure sensed by t h e  pressure probe a t  zero angle 
of a t tack .  

The approximate uncer ta in t ies  of t h e  t es t  data  and conditions, as estimated 
on the  bas i s  of random s c a t t e r  and deviations from mean values, are as follows: 

c p . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ko.030 
ap/q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kO.020 
ijA/pt,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  koa003 

M i . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kO.010 
8, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kO.13 
$, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  k0.15 

These estimates are believed t o  a f ford  reasonable indicat ions of t h e  
instrumentation e r ro r s  although it does not preclude t h e  poss ib i l i t y  of any 
unknown systematic e r ro r s  or represent t h e  m a x i m u m  possible e r r o r  t h a t  could 
occur. The angle settings are referenced t o  t h e  tunnel center l i n e .  

PRESENTATION OF RESULTS AND METHODS 

The basic  data  are presented i n  d e t a i l  f o r  probe 1 i n  f igu res  3 t o  7. 
Typical da ta  f o r  a l l  s i x  d i f f e ren t  conical probes employed i n  t h i s  investiga- 
t i o n  have been presented i n  t h e  form of p l o t s  of s ta t ic-pressure differences 
against  angle of p i tch  f o r  representat ive t es t  conditions. These da ta  are 
shown i n  figures 7 t o  12. The da ta  f o r  probe 1 appeared more consistent than 
those f o r  t h e  smaller t e s t e d  probes and were used t o  prepare de t a i l ed  analysis  
char ts  ( f i g s .  13 and 14)  from t h e  r e s u l t s  of f igure  7. The problems encountered 
with t h e  s m a l l  probes were considered t o  be primarily of mechanical nature. 
These d i f f i c u l t i e s  included a b i l i t y  t o  set and ad jus t  p i t ch  and roll angles with 
inadequate auxi l ia ry  devices and t o  achieve adequately settled pressures f o r  
t h e  s m a l l  o r i f i c e  s i zes  and r e l a t ive ly  la rge  response chambers i n  t h e  avai lable  
measurement instrumentation. The inadequacies of t e s t i n g  technique should not 
be construed t o  mean t h a t  accurate da ta  cannot be obtained with s m a l l  probes, 
ra ther  t h a t  su f f i c i en t  care should be exercised i n  the  se lec t ions  of technique 
and instrumentation t o  insure sa t i s f ac to ry  r e su l t s .  

From t h e  basic  data  f igu res  and analysis  charts of probe 1 t h e  Mach num- 
ber, t o t a l  pressure, and flow angles of previously undefined flow can be deter-  
mined from t h e  f ive probe pressure measurements. 
dure, discussed i n  d e t a i l  i n  t h e  following section, i s  as follows: 

The general  i t e r a t i v e  proce- 

(1) Assume that t h e  conical pressure probe i s  at  zero angle of p i t ch  and 
t h a t  from t h e  r a t i o  of ar i thmetic  mean surface s t a t i c  pressures t o  t h e  measured 
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p i t o t  pressure PA/ptJ2 an approximate Mach number can be obtained from 
f igure  4. 

( 2 )  From t h i s  i n i t i a l  Mach number and t h e  measured p i t o t  pressure ptJ2, 
t h e  ac tua l  stream t o t a l  pressure 
total-pressure r a t i o  across a normal shock. 
Mach number, t he  dynamic pressure 
re la t ions .  

ptJl 

q l  

can be obtained from the  theo re t i ca l  
N e x t ,  from the  t o t a l  pressure and 

can be obtained by using t h e  i sen t ropic  

( 3 )  From t h e  difference i n  pressures across t h e  two sets of diametr ical ly  
can be employed along with f igures  13 and opposed o r i f i ce s ,  t h e  f a c t o r  Ap/ql 

14 t o  determine t h e  flow angles. 

(4)  With the  flow angular i t ies  known, a correct ion can be applied t o  FAFtJ2 from s t ep  1 t o  convert it t o  a zero angle-of-pitch value ( f i g .  3 ) .  
Steps 1 and 2 are then repeated t o  obtain corrected values of Mach number and 
t o t a l  pressure.  
appendix. 

A numerical example of t h i s  procedure i s  presented i n  the  

DISCUSSION OF RESULTS 

In  order t o  assess the  capabi l i ty  of t h e  conical probe t o  determine t h e  
flow propert ies  of an unknown flow f i e l d  t h e  experimental data  a re  discussed t o  
show how t h e  p a r t i c u l a r  desired property i s  influenced. Also, t he  i t e r a t i o n  
procedure i s  explained i n  f u r t h e r  d e t a i l  with regards t o  appl icat ion and t h e  
resu l t ing  inaccuracies.  

Cone Pressure Dis t r ibu t ion  

Figure 3 i l l u s t r a t e s  t he  pressure d i s t r i b u t i o n  around t h e  surface of 
probe 1 f o r  t h e  th ree  test  Mach numbers and various angles of p i tch .  This f i g -  
ure  demonstrates t h e  approximate symmetry of t he  da ta  at equivalent geometrical 
locat ions on opposite s ides  of t h e  cone. 
r e s u l t  t h a t  a t  nominally zero angle of p i t ch  the  surface pressures a r e  essen- 
t i a l l y  constant and increasing angle of p i t ch  increases the  surface pressure 
on the  windward surface and decreases the  pressure on t h e  leeward surface. 
Although a l l  t h e  pressure coef f ic ien ts  a r e  posi t ive,  t h i s  t rend would ind ica te  
t h a t  e i t h e r  f u r t h e r  increases i n  +,he angle of p i t ch  o r  decreases i n  the  included 
cone half-angle would induce negative pressure coef f ic ien ts  on the  leeward 
surf ace. 

I l l u s t r a t e d  a l s o  i s  the  expected 

Determination of Mach Number 

The determination of Mach number using a conical p i t o t - s t a t i c  pressure 
probe depends on t h e  r a t i o  of t h e  surface s t a t i c  pressure t o  the  p i t o t  pressure 
and on the  flow inc l ina t ion  (angles of p i t ch  and roll). A t  zero angle of p i t ch  

6 



t h e  Mach number can be computed from t h e  r a t i o  of t he  surface s t a t i c  pressure 
t o  the p i t o t  pressure which i n  t h i s  invest igat ion would be equivalent t o  
pA/pt,2. Figure 4 presents t he  experimental r e su l t s  of t h i s  condition f o r  

probe 1 and a l so  the  theo re t i ca l  values (ref. 5) f o r  a sharp-nose cone (no 
pitot-pressure o r i f i c e ) .  
i c a l  values and it appeared t h a t  t he  experimental value a t  
t i v e l y  higher than the  experimental values at  M1 = 3 and M1 = 6 when com- 
pared with t h e i r  corresponding theo re t i ca l  values. Although not shown, t h i s  
same re su l t  occurred t o  a l e s s e r  degree f o r  t h e  other f i v e  probes t e s t ed .  

The experimental r e su l t s  were lower than the theoret-  
M 1  = 4.5 w a s  rela- 

A t  angles of pitch, l a rge  var ia t ions i n  t h e  s t a t i c  pressure occur around 
the  circumference of t h e  cone as previously shown i n  f igure  3. It would be 
desirable  t o  be able  t o  combine the  four  measured pressures on t h e  cone surface 
i n  such a manner as t o  provide a pressure which i s  e s sen t i a l ly  invariant  t o  
changes i n  angle of p i tch .  
r e s t r i c t ed  t o  Mach numbers near 1.60, indicate  t h a t  f o r  low angles of p i t ch  the  
ar i thmetic  average of t he  four  s t a t i c  pressures i s  nearly constant. Refer- 
ence 3 indicates  t h a t  f o r  MI = 1.95 t h e  ari thmetic average i s  constant up t o  
angles of p i tch  of approximately 15'; f o r  
var ia t ion  of t he  r a t i o  of t he  ar i thmetical ly  averaged s t a t i c  pressures t o  t h e  
p i t o t  pressure 

probe 1. For convenience has been normalized t o  t h e  zero pi tch value. 

Geometrically s i m i l a r  r o l l  angles were grouped together inasmuch as  the  aver- 
aged s t a t i c  pressures would be expected t o  be the  same because of symmetry. 
The data  indicate  t h a t  increasing Mach number decreases t h e  p i tch  range i n  which 
t h e  r a t i o  of t h e  ar i thmetical ly  averaged s t a t i c  pressures t o  t h e  p i t o t  pressure 

w a s  constant w i t h i n  1 percent up t o  approx- w a s  constant. A t  M1 = 3, 
imately 5' of pitch; whereas, at  M1 = 6, !j5A/pt,2 

cent only up t o  2O o r  3 O  of p i tch .  
not have a large e f fec t  on 

GA/pt,2 i n  going f r o m  @ = Oo t o  

The r e s u l t s  of references 1 and 2, which were 

M1 = 2.46, only up t o  about 8 O .  The 

cA/pt,2 w i t h  angle of p i tch  i s  presented i n  f igure  5 f o r  

w a s  constant within 1 per- 
C A P t ,  2 

Figure 5 i l l u s t r a t e s  t h a t  angle of r o l l  does 
although there  i s  a s l igh t  decrease i n  

@ = 40' and f rom @ = 90' t o  @ = 50°. 
' A p t ,  2 

I n  general, t h e  procedure f o r  determining Mach number i s  f i rs t  t o  assume 
0 = 0. A f i rs t  approximation of t he  Mach number M1 i s  then obtained from 
f igure 4 f o r  t he  measured value of A t,2. The flow angles 8 and @ a re  
then determined by t h e  method described i n  t h e  sect ion "Determination of Flow 
Angles." When 0 and $ a re  known along with the  f irst  approximation of M1,  
a correction fac tor  f o r  ijA/ptJ2 i s  obtained from f igure  5 and an equivalent 
value of P,/ptJ2 corresponding t o  0 = 0 i s  calculated by a divis ion of t he  

measured value by t h i s  correction f ac to r .  I n  some cases b e t t e r  accuracy can be 
obtained by an interpolat ion between the  Mach number curves i n  f igure  5 .  For 
example, if t h e  f i rs t  approximated Mach number i s  3.2 then t h e  M1 = 3 curve 
can be  s a t i s f a c t o r i l y  used but i f  the  first approximated Mach number happened t o  
be 5.25 then an average between t h e  M1 = 4.5 and M1 = 6.0 curves would give 
a more accurate correction f ac to r .  

+ 



A second approximation of t h e  Mach number can be obtained from figure 4 
by using the  equivalent cA/pt value f o r  e = 0. Generally a second itera- 

t i o n  i s  required but a t h i r d  i t e r a t i o n  would be unnecessary. If 0 w a s  found 
t o  be s m a l l  so  t h a t  t he  correction f ac to r  i s  near un i ty  then the  first approxi- 
mation i s  suf f ic ien t .  

7 

Figure 4 shows that t h e  slope of t h e  curve of CA/pt p lo t ted  against  
> 

Mach number decreases with increasing Mach number. This r e su l t  i s  detrimental  
t o  the  a b i l i t y  t o  determine Mach number accurately i n  t h a t  any s m a l l  uncertainty 

could introduce a s igni f icant  e r r o r  i n  Mach number a t  the  higher in 'Ab,,, 
Mach numbers. This technique or procedure would therefore  be of l imited use- 
fulness  a t  higher hypersonic speed ranges. 
of free-stream s t a t i c  pressure t o  p i t o t  pressure behind a normal shock, which 
i l l u s t r a t e s  t he  r e l a t ive  magnitude of t h e  cone surface pressure t o  the  free-  
stream s t a t i c  pressure. 

Also shown i n  f igure  4 i s  the  r a t i o  

The e r ro r  i n  determining Mach number with probe 1 by use of f igures  4 
and 5 w a s  estimated t o  be k0.06 a t  M = 3, k0.12 a t  M = 4.5, and k0.20 a t  
M = 6.0. 

Determination of Total  Pressure 

The t o t a l  pressure pt,l i s  a function of p i t o t  pressure pt,2, Mach num- 
ber  M1, and angle of p i tch .  
t h e  r a t i o  of t he  p i t o t  pressure t o  t he  t o t a l  pressure i s  equal t o  t h e  theore t i -  
c a l  total-pressure r a t i o  across a normal shock wave. Once the  Mach number i s  
known from the  preceding section, pt,2/pt,l can be found f o r  t h a t  Mach number 
using the  theo re t i ca l  t ab l e s  of reference 6. The t o t a l  pressure can then be 
obtained since the  measured p i t o t  pressure i s  known. 

The assumption i s  made t h a t  a t  zero angle of p i tch  

The e f f ec t  of Mach number and angle of p i t ch  on the  measured p i t o t  pres- 

M1 = 4.5, t h e  angle-of-pitch range t e s t ed  had a negl igible  e f f ec t  on the  

A t  Mach number 6, however, t he  measured 

sure i s  shown i n  f igure  6 f o r  probe 1. 
and 
measured p i t o t  pressure, or t h a t  a t  8 = 20' t h e  probe measured the  same p i t o t  
pressure as it would have at  8 = 0. 
p i t o t  pressure i s  no longer independent of p i tch  angle and above 
p i t o t  pressure must be divided by an appropriate correction f ac to r  from the  

The r e s u l t s  ind ica te  tha t ,  f o r  M1 = 3 

8 = 14O t he  

a t  t , 2  ca l ibra t ion  using f igure  6 i n  order t o  obtain an equivalent value of p 
e = 0. 

Since t h e  a b i l i t y  t o  determine t o t a l  pressure depends on Mach number, it 
i s  evident from t h e  preceding discussion of Mach number t h a t  t he  accuracy of 
determining t o t a l  pressure diminishes with increasing Mach number. The e s t i -  
mated possible e r r o r  i n  determining t o t a l  pressure i s  7 percent at MI = 3.0, 
10 percent a t  Mi = 4.5, and 13 percent at  M i  = 6.0. 
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Determination of Dynamic Pressure 

Since the  dynamic pressure q, 

Ap/ql 

i s  calculated from Mach number and t o t a l  
pressure it would appear t h a t  t he  e r ro r s  associated with MI and ptJl would 

be accumulative and t h e  f ac to r  could not be used with any degree of 
confidence i n  determining flow angles. However, t h i s  i s  not so i n  tha t  any 
e r ro r s  i n  Mach number and t o t a l  pressure w i l l  counterbalance each other i n  the  
calculat ion of t h e  dynamic pressure and i n  ac tua l i t y  can be determined 
within 112 percent. 

ql 

The f a c t  t h a t  ql can be determined with a high degree of accuracy sug- 
ges t s  t h e  poss ib i l i t y  of one fu r the r  i t e r a t i o n  using 

indicat ion of Mach number and i n  tu rn  t o t a l  pressure. 
p rac t i ca l  because q1/ptJ2 i s  l e s s  sens i t ive  than PA/ptJ2 
number. 

ql p t o  get  a b e t t e r  / t J 2  
This however i s  not 

( f i g .  4 )  t o  Mach 

Determination of Flow Angles 

The flow angles can be determined from the  pressure differences across 
diametrically opposed o r i f i ce s .  The var ia t ion  of t he  difference i n  s t a t i c -  
pressure coeff ic ient  across opposed o r i f i c e s  with angle of p i tch  f o r  the  var i -  
ous Mach numbers a re  presented i n  f igures  7 t o  12 f o r  probes 1 t o  6, respec- 
t i ve ly .  Because of wind-tunnel stream angularity, support misalinement, and 
probe asymmetry a l l  the  curves do not pass through the or igin.  Comparing 
probe 1 ( f i g .  7), probe 2 ( f i g .  8 ) ,  and probe 3 ( f i g .  9) indicates  the expected 
result t h a t  increasing the  included cone angle causes an increase i n  the  pres- 
sure difference between the  s e t s  of diametrically opposed o r i f i ce s .  The curves 
were approximately l i n e a r  a t  but as the  Mach number increased t o  6 some 
curvature i s  shown. 

M = 3 

In order t o  f a c i l i t a t e  t h e  determination of 8 and $ from measurements 

of e) and (F) , t h e  r e s u l t s  of f igure  7 have been combined i n  f igure  13 
E 0 

t o  give p lo t s  of ($)E against  (%)o f o r  various values of e and $ f o r  

probe 1. The curves of f igure  7 were f irst  adjusted t o  eliminate t h e  e f f ec t s  
of tunnel stream angularity, support misalinement, and probe asymmetry. 

Because of symmetry, curves which represent an average of t h e  da ta  are 
shown i n  one quadrant only. Information for t he  other quadrants can then be 
determined from t h i s  f igure  provided the  proper sign convention i s  used as 
indicated.  

The downwash E and sidewash cs can be determined d i r e c t l y  from t h e i r  
r e l a t ion  with angle of p i tch  8 and angle of roll $ which i s  

9 
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t an  E = -tan e cos 6 
t a n  u = t an  e s i n  fl 

Figure 1 4  i s  t h e  trigonometric conversion from f igu re  13 and presents 

p lo t ted  against  

wash IS. Comparison of f igures  14(a) ,  14(b),  and 14 (c )  demonstrates a marked 
s imi la r i ty  between t h e  charts  f o r  t h e  three  Mach numbers. 

f o r  various angles of downwash E and angles of side- WU 
The procedure f o r  determining flow angles i s  t o  f i n d  the  difference 

between the  measured surface s t a t i c  pressures and with the  calculated value of 

dynamic pressure ql t h e  fac tors  can be obtained. Using 

these f ac to r s  along with f igures  13 and 14, t h e  values of 8, 6, E, and CI 
can be found. 
cussed. 

Any necessary correction can then be applied as previously dis-  
The e r ro r  i n  determining flow angles i s  estimated t o  be fO.5'. 

CONCLUDING REMARKS 

A wind-tunnel invest igat ion w a s  conducted t o  study t h e  charac te r i s t ics  of 
s i x  d i f f e ren t  conical probes f o r  use i n  determining l o c a l  flow conditions. 
Charts were prepared f o r  one of t h e  probes t h a t  enable t h e  d-etermination of 
l o c a l  Mach number, t o t a l  pressure, and flow angular i ty  from probe-indicated 
pressures. 
6.0 and a t  angles of p i t ch  up t o  about 20°. 

Pressure measurements were taken a t  Mach numbers of 3.0, 4.5, and 

The r e s u l t s  ind ica te  t h a t  Mach number can be determined within approxi- 
The possible e r r o r  i n  mately k3 percent and flow angles within about fO.50. 

determining t o t a l  pressure, however, increases with increasing Mach number. 
Total  pressure can be determined within approximately f5 percent a t  a Mach num- 
ber  of 3.0 and fl3 percent a t  a Mach number of 6.0. 
a r e  f o r  t h e  instrumentation and techniques employed i n  t h i s  invest igat ion and 
are not necessarily the  l imi t ing  capabi l i ty  of t h e  method i t s e l f .  In  general 
an i t e r a t i v e  procedure i s  usually required i n  order t o  obtain the  best  accuracy 
with t h i s  method. 

These quoted accuracies 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va.,  June 25, 1-96?. 
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APPENDIX 

The procedure used i n  determining t h e  Mach number, t o t a l  pressure, and 
flow direct ions of a previously unknown flow f i e l d  from t he  measured p i t o t  pres- 
sure and four s t a t i c  pressures on t h e  cone surface i s  i l l u s t r a t e d  by t h e  fo l -  
lowing numerical example. The measured pressures are 

= 10.0 mm Hg Ps, a 

= 11.22 Hg ps, b 

= 26.7 I-I~ ps, c 

pt, = 97-16 " Hg 

The arithmetic mean of t h e  four s t a t i c  pressures i s  Step 1: 

The r a t i o  of t h i s  ar i thmetic  mean s t a t i c  pressure t o  t h e  p i t o t  pressure i s  

Assuming t h a t  
from f igure  4.  

9 = 0, the  f i rs t  approximated Mach number of 3.75 i s  obtained 

Step 2: For 0 = 0, t h e  t o t a l  pressure r a t i o  Pt ,2/pt, 1 i s  given by the  

theo re t i ca l  normal shock-wave re la t ions  tabulated i n  reference 6. For 
M1 = 3.75, 

Pt'2 - - -  - 0.1717 
P t , l  

Theref ore, 

11 



APPENDIX 

The dynamic pressure i s  obtained from t h e  theo re t i ca l  isentropic  flow 

re l a t ion  ql/pt, which i s  a l so  tabulated i n  reference 6. For MI = 3.75, 
q1 

- =  0.09098 
Pt, 1 

and t h e  dynamic pressure ql i s  

Step 3: Dividing t h e  
of o r i f i c e s  by t h e  dynamic 

= (0.09098)(566) = 31.5 mm ~g Pt,  1 

measured s ta t ic-pressure difference across both p a i r s  
pressure gives 

The downwash and sidewash angles can now be obtained from f igure  14 by using 

. Since M1 = 3.75, however, it i s  not immedi- t h e  f ac to r s  

a t e l y  evident whether t h e  f igure f o r  Mi = 3 or Mi = 4.5 would provide t h e  
b e t t e r  r e su l t s .  It i s  subsequently shown t h a t  any angle-of-pitch e f f ec t s  cause 
t h e  i n i t i a l  approximated Mach number t o  be low; therefore,  when f igure  14(b)  
f o r  M = 4.5 i s  used, 

ME and 

E = - 7 . 8 O  

Also i n  order t o  correct  t he  Mach number f o r  flow angular i ty  effects ,  t he  angles 
of p i tch  and roll must be known. From f igure  l3 (b ) ,  

fl = 40' 

e = ioo 

Step 4: Once the  p i t ch  and roll angles are known, t h e  correction f ac to r  
can be obtained from figure 5. Interpolat ing between t h e  curves f o r  M = 3 
and M = 4.5, t h e  correction f ac to r  i s  

1 2  



APPENDIX 

The corrected value of c~ pt corresponding t o  8 = 0 i s  I ,  

0.189 
1.04 = 0.182 

Now knowing the  corrected value of FA/pt,* and using f igure 4, the  i t e r a t ed  
Mach number i s  found t o  be 4.0. 

Step 5: Using the  second approximation f o r  Mach number, s t ep  2 i s  
repeated. From reference 6 at Mi = 4.0, 

Pt ,2  

P t , l  
- =  0.1388 

Therefore, 

97'16 = 700 mm Hg - - 
't,l 0.1388 

Had it been found t h a t  the air  speed w a s  around 
then pt,2 would have had t o  be corrected t o  
being used t o  determine pt , l .  
pressure a re  used the  corrected dynamic pressure i s  

MI = 6 with large flow angles 
( ~ t , 2 ) ~ ~  using f igure  6 before 

When the  new values of Mach number and t o t a l  

q1 = ($)Pt,l = (O.O7376)(700) = 51.6 mm Hg 

Since there  was l i t t l e  change i n  dynamic pressure the  previously determined flow 
angles need no correction. Consequently from the f i v e  conical probe pressure 
measurements the  loca l  flow-field propert ies  a re  

Mi = 4.0 

P t , l  = 700 " Hg 
E = -7.8' 

0 = 6.4' 
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TABLE I.- CONE DESIGNATION 

- Included cone half-angle 

Diameter, 
Probe 

- _ _ -  

Included cone 
half  - angle, 

dee; 

20 
15 
25 
15 
20 
20 

- -  _ _  . -  

4 2  

0.603 
590 
.614 
.629 
655 
.760 

Diameter 

__ - 

O r i f  i c e  
d i m e  t e r  , 

i n .  

0.052 
.052 
.052 
.025 
025 
0135 

cm 
_. 

0.132 
.132 
.132 

* 0343 

.064 

.064 
. 

Posi t ion t e s t ed  
on s t r u t  

( f ig .  l(a>> 

2 
1 
3 
1 
3 
2 

- _. 



2.41 (6.121 .TI 
L Y 3 g T y p i c a l  

2</ AI?= 
2 

/” Four static pressure orifices 

/ 
%tot pressure orifice(typical1 Probe I 

.30 (5.841 

1-63  (1.601 

Diam.=0.50 11.271 

Probe 2 orifice diameter -0.052 1.132) 

/ for probes 1.2,and 3 

2.47 (6.271- 

2 

Diam.=O.JO 11.27) 

Maximum lip thickness=.002 
(Typicoll 

Probe 

1- 2.51 16.38) i““’“-“I 

15 

Probe 4 

Ressure aifice diamter; 0.025 (.0641 
for probes 4 an3 5 

Probe 5 

Probe 6 
Pressure orifice diameter -0.0135 LO3431 

for probe 6 

(a) Conical pressure probe models. 

Figure 1.- Test apparatus. All dimensions are i n  inches (centimeters) unless otherwise noted. 



Pivot o m  

4.50 111.43) 

4.50 111.43) 

T -- 2.15- 
15.461 

I I I 

(b) Model support assembly. 

Figure 1.- Concluded. 
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X 

Figure 2.- Orifice designation and angle notation. 



(a) M1 = 3.0. 

Figure 3.- Circumferential pressure distribution on surface of cone. Probe 1. 
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(b) M i  = 4.5. 

Figure 3.- Continued. 
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Figure 4.- Variation of static-to-pitot pressure ratio wi th Mach number at zero angle of pitch. Probe 1. 
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.- 24 -24 -16 -8 0 8 16 
Angle of pitch, 8, deg 

Figure 5.- Effect of angle of pitch on  ratio of average static pressure to pitot pressure. Probe 1. 
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-24 -16 -8 0 8 16 24 
Angle of pitch, 6, deg 

.V 

Figure 6.- Effect of angle of pitch on pitot pressure. Probe 1. 
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-24 -20 -16 -I 2 -8 0 4 8 12 16 20 24 
Angle of pitch, e, deg 

(a) M i  = 3.0; orifices a and c. 

Figure 7.- Variation of static pressure differences with angle of pitch. Probe 1. 
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Angle of pitch, 8, deg 

16 20 24 

(b) M1 = 3.0; orif ices band d. 

Figure 7.- Continued. 
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(c) M1 = 4.5; orifices a and c. 

Figure 7.- Continued. 
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(d) M i  = 4.5; orifices band d. 

Figure 7.- Continued. 
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(e) Mi = 6.0; orifices a and c. 

Figure 7.- Continued. 
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(f) M1 = 6.0; orifices b a n d  d. 

Figure 7.- Concluded. 
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Figure 8.- Variation of static pressure differences with angle of pitch. Probe 2. 
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(b) M1 = 3.0; orif ices b a n d  d. 

Figure 8.- Continued. 
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.I6 -12 -a 4 a 12 
Angle of pitch, 0, deg 

16 20 24 

(c) Mi = 4.5; orifices a and c. 

Figure 8.- Continued. 
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Angle of pitch, 8, deg 

(d) M1 = 4.5; orifices band d. 

Figure 8.- Continued. 
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4 8 12 16 20 24 
pitch, 8, deg 

(e) M1 = 6.0; orif ices a and c. 

Figure 8.- Continued. 
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(f) M1 = 6.0; orifices band d. 

Figure 8.- Concluded. 
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(a) M1 = 3.0; orif ices a and c. 

12 16 20 24 

Figure 9.- Variation of static pressure differences w i th  angle of pitch. Probe 3. 
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Figure 9.- Continued. 
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Angle of pitch, 0, deg 

(c) M1 = 4.5; orifices a and c. 

Figure 9.- Continued. 
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(d) M1 = 4.5; orifices band d. 

Figure 9.- Continued. 
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(e) M1 = 6.0; orifices a and c. 

Figure 9.- Continued. 
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(f) M1 = 6.0; orif ices b a n d  d. 

Figure 9.- Concluded. 
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-4 4 8 12 16 20 24 
Angle of pitch,  0, d e g  

(a) M1 = 3.0; orifices a and c. 

Figure 10.- Variation of static pressure differences with angle of pitch. Probe 4. 
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Figure 10.- Continued. 
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(c) M1 = 4.5; orifices a and c. 

Figure 10.- Continued. 

45 



I 
' I  

~ 

1 
I 

i 
i 
I 
! 
1 

I 

! 

-12 -8 -4 0 4 
Angle of pitch, e, deg 

12 16 20 24 

(d) M1 = 4.5; orif ices b a n d  d. 

Figure 10.- Continued. 
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(e) M1 = 6.0; or i f ices a a n d  c. 

F igu re  10.- Continued. 
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(f) MI = 6.0; orifices b a n d  d. 

Figure 10.- Concluded. 
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(a) M1 = 3.0; orifices a and c. 
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Figure 11.- Variation of static pressure differences with angle of pitch. Probe 5. 
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(b) M1 = 3.0; orifices band d. 

Figure 11.- Continued. 
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(c) M1 = 4.5; or i f ices a and  c. 

F igu re  11.- Continued. 
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(d) M1 = 4.5; orifices band d. 

Figure 11.- Continued. 
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Figure 11.- Continued. 
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[f) M1 = 6.0; orifices b a n d  d. 

F igu re  11.- Concluded. 
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Figure 12.- Variation of static pressure differences with angle of pitch. Probe 6. 
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(b) M1 = 3.0; orifices b a n d  d. 

Figure 12.- Continued. 
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(c) M1 = 4.5; orifices a and c. 

Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.- Concluded. 
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Figure 13.- Chart  for determination of pitch and roll angles. Probe 1. 
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Figure 13.- Continued. 
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Figure 13.- Concluded. 
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